Package: DGEAR 0.1.4

DGEAR: Differential Gene Expression Analysis with R

Analyses gene expression data derived from experiments to detect differentially expressed genes by employing the concept of majority voting with five different statistical models. It includes functions for differential expression analysis, significance testing, etc. It simplifies the process of uncovering meaningful patterns and trends within gene expression data, aiding researchers in downstream analysis. Boyer, R.S., Moore, J.S. (1991) <doi:10.1007/978-94-011-3488-0_5>.

Authors:Koushik Bardhan [aut, cre, ctb], Chiranjib Sarkar [aut, ths]

DGEAR_0.1.4.tar.gz
DGEAR_0.1.4.zip(r-4.5)DGEAR_0.1.4.zip(r-4.4)DGEAR_0.1.4.zip(r-4.3)
DGEAR_0.1.4.tgz(r-4.4-any)DGEAR_0.1.4.tgz(r-4.3-any)
DGEAR_0.1.4.tar.gz(r-4.5-noble)DGEAR_0.1.4.tar.gz(r-4.4-noble)
DGEAR_0.1.4.tgz(r-4.4-emscripten)DGEAR_0.1.4.tgz(r-4.3-emscripten)
DGEAR.pdf |DGEAR.html
DGEAR/json (API)
NEWS

# Install 'DGEAR' in R:
install.packages('DGEAR', repos = c('https://koushikbardhan2000.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.88 score 15 scripts 169 downloads 7 exports 45 dependencies

Last updated 5 months agofrom:05f2ae2d7d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winOKOct 25 2024
R-4.5-linuxOKOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:DGEARperform_anovaperform_dunnett_testperform_h_testperform_t_testperform_wilcox_testread_and_preprocess_data

Dependencies:askpassbootcellrangerclassclicpp11crayoncurldata.tableDescToolse1071ExactexpmfansigldgluehmshttrjsonlitelatticelifecyclelmommagrittrMASSMatrixmimemvtnormopensslpillarpkgconfigprettyunitsprogressproxyR6RcppreadxlrematchrlangrootSolverstudioapisystibbleutf8vctrswithr