Package 'DGEAR'

Title: Differential Gene Expression Analysis with R
Description: Analyses gene expression data derived from experiments to detect differentially expressed genes by employing the concept of majority voting with five different statistical models. It includes functions for differential expression analysis, significance testing, etc. It simplifies the process of uncovering meaningful patterns and trends within gene expression data, aiding researchers in downstream analysis. Boyer, R.S., Moore, J.S. (1991) <doi:10.1007/978-94-011-3488-0_5>.
Authors: Koushik Bardhan [aut, cre, ctb] , Chiranjib Sarkar [aut, ths]
Maintainer: Koushik Bardhan <[email protected]>
License: MIT + file LICENSE
Version: 0.1.4
Built: 2025-02-22 03:39:54 UTC
Source: https://github.com/cran/DGEAR

Help Index


Differential Gene Expression Analysis with R

Description

Main function which incorporates results from five statistical models and detects DEGs through majority voting.

Usage

DGEAR(dataframe, con1, con2, exp1, exp2, alpha, votting_cutoff)

Arguments

dataframe

A matrix containing the gene expression data

con1

Starting column of the control of the expression data

con2

Ending column of the control of the expression data

exp1

Starting column of the experiment of the expression data

exp2

Ending column of the experiment of the expression data

alpha

Value of significance level ranging from 0 to 1 (0.05 states 5 % significance)(Default = 0.05).

votting_cutoff

A numeric value serves as Majority voting (Default = 2)

Details

To use this tool the necessary parameters are con1 = Control start column, con2 = Control end column, exp1 = Experiment start column, exp2 = Experiment end column, alpha = Value of significance level, voting_cutoff = Majority voting value (not more than 5, since there are 5 statistical methods which take part in the majority voting)

Value

A matrix containing Differentially Expressed Genes(DEGs) detected

Examples

library(DGEAR)
data("gene_exp_data")
DGEAR(dataframe = gene_exp_data, con1 = 1, con2 = 10,
  exp1 = 11, exp2 = 20, alpha = 0.05, votting_cutoff = 2)

A dataset containing gene expression data

Description

This dataset contains statistically simulated gene expression data for ease of exercise.

Usage

gene_exp_data

Format

A data frame with 10 rows and 20 columns, the columns represents samples, say first 10 columns 1 to 10 being control and 11 to 20 being experiment. Whereas, the rows of the dataset contains genes. First 5 out of 10 genes, gene1-gene5 are the true DEGs as the expression values for the first 10 samples are ~13 times higher than the rest.

Examples

# Data will be loaded with lazy loading and can be accessible when needed.
data("gene_exp_data")
head(gene_exp_data)

Function for ANOVA One-Way Test

Description

Function for ANOVA One-Way Test

Usage

perform_anova(datafile, con, exp, alpha = 0.05)

Arguments

datafile

A matrix containing the gene expression data

con

A data frame or matrix containing the expression values for the control.

exp

A data frame or matrix containing the expression values for the experiment.

alpha

Value of significance level ranging from 0 to 1 (default = 0.05 states 5 % significance).

Value

A data frame containing values for statistic score, p-values etc for each gene being tested.

Examples

library(DGEAR)
data("gene_exp_data")
data = read_and_preprocess_data(datafile = gene_exp_data, con1=1,con2=10,exp1=11,exp2=20)
perform_anova(datafile = data$datafile, con= data$con, exp= data$exp)

Function for Dunnett's Test

Description

Function for Dunnett's Test

Usage

perform_dunnett_test(datafile, con, exp, alpha = 0.05)

Arguments

datafile

A matrix containing the gene expression data

con

A data frame or matrix containing the expression values for the control.

exp

A data frame or matrix containing the expression values for the experiment.

alpha

Value of significance level ranging from 0 to 1 (default = 0.05 states 5 % significance).

Value

A data frame containing values for statistic score, p-values etc for each gene being tested.

Examples

library(DGEAR)
data("gene_exp_data")
data = read_and_preprocess_data(datafile = gene_exp_data, con1=1,con2=10,exp1=11,exp2=20)
perform_dunnett_test(datafile = data$datafile, con= data$con, exp= data$exp)

Function for Half's-T-Test Analysis

Description

Function for Half's-T-Test Analysis

Usage

perform_h_test(con, exp, alpha = 0.05, FC)

Arguments

con

A data frame or matrix containing the expression values for the control.

exp

A data frame or matrix containing the expression values for the experiment.

alpha

Value of significance level ranging from 0 to 1 (default = 0.05 states 5 % significance).

FC

An array or list containing fold change values for each gene, calculated by

Value

A data frame containing values for statistic score, p-values etc for each gene being tested.

Examples

library(DGEAR)
data("gene_exp_data")
data = read_and_preprocess_data(datafile = gene_exp_data, con1=1,con2=10,exp1=11,exp2=20)
perform_h_test(con= data$con, exp= data$exp, FC = data$FC)

Function for t-Test Analysis

Description

Function for t-Test Analysis

Usage

perform_t_test(con, exp, alpha = 0.05)

Arguments

con

A data frame or matrix containing the expression values for the control.

exp

A data frame or matrix containing the expression values for the experiment.

alpha

Value of significance level ranging from 0 to 1 (default = 0.05 states 5 % significance).

Value

A data frame containing values for statistic score, p-values etc for each gene being tested.

Examples

library(DGEAR)
data("gene_exp_data")
data = read_and_preprocess_data(datafile = gene_exp_data, con1=1,con2=10,exp1=11,exp2=20)
perform_t_test(con= data$con, exp= data$exp)

Function for Wilcoxon-Mann-Whitney U-Test

Description

Function for Wilcoxon-Mann-Whitney U-Test

Usage

perform_wilcox_test(con, exp, alpha = 0.05)

Arguments

con

A data frame or matrix containing the expression values for the control.

exp

A data frame or matrix containing the expression values for the experiment.

alpha

Value of significance level ranging from 0 to 1 (default = 0.05 states 5 % significance).

Value

A data frame containing values for statistic score, p-values etc for each gene being tested.

Examples

library(DGEAR)
data("gene_exp_data")
data = read_and_preprocess_data(datafile = gene_exp_data, con1=1,con2=10,exp1=11,exp2=20)
perform_wilcox_test(con= data$con, exp= data$exp)

Function to read data and perform initial pre-processing

Description

Function to read data and perform initial pre-processing

Usage

read_and_preprocess_data(
  datafile,
  con1,
  con2,
  exp1,
  exp2,
  alpha = 0.05,
  votting_cutoff = 2
)

Arguments

datafile

A matrix or data frame containing gene expression data

con1

Starting column of the control of the expression data

con2

Ending column of the control of the expression data

exp1

Starting column of the experiment of the expression data

exp2

Ending column of the experiment of the expression data

alpha

Value of significance level ranging from 0 to 1 (0.05 states 5 % significance)(Default = 0.05).

votting_cutoff

A numeric value serves as Majority voting (Default = 2)

Value

A large list containing the data file and the input values

Examples

data("gene_exp_data")
read_and_preprocess_data(datafile = gene_exp_data, con1=1,con2=10,exp1=11,exp2=20)